Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qiaohua Wei, Gangqiang Yin and Zhongning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail:
czngroup@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.066$
$w R$ factor $=0.131$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ-methylenebis(diphenylphosphine)$\left.\kappa^{2} P: P^{\prime}\right]$ disilver(I) diperchlorate acetonitrile disolvate

The dication in the title compound, $\left[\operatorname{Ag}_{2}\left(\mu_{2} \text { - } \mathrm{dppm}\right)_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$, where dppm is bis(diphenylphosphino)methane $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)$, is situated across an inversion centre. Each Ag atom is two-coordinate and exists in an approximately linear geometry. An Ag. . N contact of 2.874 (10) \AA is observed in the structure.

Comment

Binuclear complexes of silver with certain bidentate ligands are of great interest due to their rich luminescence and bonding properties. Several compounds of binuclear $\left[\mathrm{Ag}_{2}\left(\mu_{2^{-}}\right.\right.$ $\left.\mathrm{dppm})_{2}\right]^{2+}$ dications, counterbalanced by various anionic species, have been reported previously (Ahrens \& Jones, 1998; Lusser \& Peringer, 1985; Ho \& Bau, 1983). Here we report the crystal structure of the title compound, $\left[\mathrm{Ag}_{2}\left(\mu_{2}-\mathrm{dppm}\right)_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$, (I).

(I)

The asymmetric unit of (I) consists of one-half of an $\left[\mathrm{Ag}_{2}\left(\mu_{2} \text {-dppm }\right)_{2}\right]^{2+}$ dication, situated across a crystallographic inversion centre, one independent ClO_{4}^{-}anion and an acetonitrile solvent molecule. The structure of the dication with atomic numbering scheme is shown in Fig. 1. In the dication, the Ag atoms are doubly bridged by two dppm ligands, forming an eight-membered $\mathrm{Ag}_{2} \mathrm{P}_{4} \mathrm{C}_{2}$ ring. The formation of an $M_{2} \mathrm{P}_{4} \mathrm{C}_{2}$ ring ($M=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Pt}$ and Pd) has been reported previously (Ho \& Bau, 1983; Neo et al., 1995; Van der Ploeg et al., 1979; Yam et al., 1997). The eightmembered ring displays a pseudo-chair conformation, as observed in $\left[\mathrm{Ag}_{2}\left(\mu_{2} \text {-dppm }\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Ahrens \& Jones, 1998). In the ring, the Ag centers are two-coordinate, exhibiting an approximately linear coordination geometry, with a $\mathrm{P} 1-\mathrm{Ag} 1-\mathrm{P} 2^{\mathrm{i}}$ [symmetry code: (i) $\left.-x, 1-y,-z\right]$ angle of $174.95(7)^{\circ}$. The intramolecular $\mathrm{Ag} \cdots \mathrm{Ag}$ contact is 3.0581 (12) \AA, which is longer than that observed in other silver systems; $2.9532(7) \AA$ in $\left[\mathrm{Ag}_{2}\left(\mu_{2} \text {-dppm }\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$-$2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Ahrens \& Jones, 1998) and 2.987 (2) \AA in $\left[\mathrm{Ag}_{2}\left(\mu_{2}-\right.\right.$ $\left.\mathrm{dppm})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Hong et al., 1997). The $\mathrm{Ag}-\mathrm{P}$ distances of 2.408 (2) and 2.410 (2) \AA are comparable to those observed in the above two complexes.

Figure 1
The structure of the dication of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

The $\mathrm{Ag} 1 \cdots \mathrm{~N} 1$ contact distance of $2.874(10) \AA$ is shorter than that observed $[3.160(6) \AA]$ in $\left[\mathrm{Ag}_{3}\left\{\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}\right\}_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ (Che et al., 1992) but longer than that observed $[2.552(2) \AA$ i $]$ in $\left[\mathrm{Ag}_{3}(\mathrm{dppm})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2} \cdot\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$ (Che et al., 1991). The Ag. O o contact distances in (I) $\left[\mathrm{Ag} 1 \cdots \mathrm{O} 12=3.071\right.$ (7) \AA and $\mathrm{Ag} 1 \cdots \mathrm{O} 12^{\mathrm{i}}=$ 3.367 (6) \AA A lie in the range 2.959 (3) -3.514 (2) \AA reported for $\left[\mathrm{Ag}_{2}\left(\mu_{2} \text {-dppm }\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Ahrens \& Jones, 1998) but lie outside the range 2.418 (5) -2.689 (6) \AA reported for $\left[\mathrm{Ag}_{2}(\mathrm{dppm})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (Ho \& Bau, 1983).

Experimental

The title compound was synthesized by a modification of a literature procedure (Lusser \& Peringer, 1985). The complex was obtained by the reaction between $\left[\mathrm{Cu}_{2}\left(\mu_{2} \text { - } \mathrm{dppm}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\mathrm{AgCCC}\left(\mathrm{CH}_{3}\right)_{3}$ in a 1:2 ratio in acetonitrile solution under anaerobic conditions for 24 h . Well formed colorless crystals suitable for X-ray diffraction measurements were grown by the slow diffusion of diethyl ether into an acetonitrile solution at room temperature.

Crystal data

$\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{4}\right)_{2}\right]\left(\mathrm{ClO}_{2}\right)_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=1265.48$
Monoclinic, $P 2_{1} / n$
$a=11.4553(3) \AA$
$b=15.1766(1) \AA$
$c=16.0597(5) \AA$
$\beta=101.826(2)^{\circ}$
$V=2732.76(11) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.538 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2900 \\
& \quad \text { reflections } \\
& \theta=2.3-25.0^{\circ} \\
& \mu=0.99 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.32 \times 0.30 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD
diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.723, T_{\text {max }}=0.759$
9485 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0246 P)^{2}\right. \\
& \quad+7.4956 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{P} 1$	$2.4081(18)$	$\mathrm{P} 1-\mathrm{C} 21$	$1.806(7)$
$\mathrm{Ag} 1-\mathrm{P} 2^{\mathrm{i}}$	$2.4097(18)$	$\mathrm{P} 1-\mathrm{C} 11$	$1.820(7)$
$\mathrm{Ag} 1 \cdots \mathrm{Ag}^{\mathrm{i}}$	$3.0581(12)$	$\mathrm{P} 1-\mathrm{C} 20$	$1.836(6)$
$\mathrm{P} 1-\mathrm{Ag} 1-\mathrm{P} 2^{\mathrm{i}}$			$105.4(3)$
$\mathrm{P} 1-\mathrm{Ag} 1 \cdots \mathrm{Ag}^{\mathrm{i}}$		$90.22(7)$	$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 20$
$\mathrm{P} 2^{\mathrm{i}}-\mathrm{Ag} 1 \cdots \mathrm{Ag}^{\mathrm{i}}$	$89.07(5)$	$\mathrm{C} 21-\mathrm{P} 1-\mathrm{Ag} 1$	$117.1(2)$
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 11-\mathrm{P} 1-\mathrm{Ag} 1$	$112.8(2)$		
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 20$	$102.0(3)$	$\mathrm{C} 20-\mathrm{P} 1-\mathrm{Ag} 1$	$112.3(2)$

Symmetry code: (i) $-x, 1-y,-z$.
The H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}$ bond lengths were fixed in the range $0.93-0.97 \AA$), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSF of China (No. 20171044).

References

Ahrens, B. \& Jones, P. G. (1998). Acta Cryst. C54, 16-18.
Che, C. M., Yip, H. K., Li, D., Peng, Sh. M., Lee, G. H., Wang, Y. M. \& Liu, Sh. T. (1991). Chem. Commun. 22, 1615-1617.

Che, C. M., Yip, H. K., Yam, V. W. W., Cheuang, P. Y., Lai, T. F., Shieh, Sh. J. \& Peng, Sh. M. (1992). J. Chem. Soc. Dalton Trans. pp. 427-433.
Ho, D. M. \& Bau, R. (1983). Inorg. Chem. 22, 4073-4079.
Hong, M. C., Wu, D. X. \& Liu, H. Q. (1997). Polyhedron, 16, 1957-1962.
Lusser, M. \& Peringer, P. (1985). Polyhedron, 4, 1997-1999.
Neo, S. P., Zhou, Z. Y., Mak, T. C. W. \& Hor, T. S. A. (1995). Inorg. Chem. 34, 520-523.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Van der Ploeg, A. F. M. J., Van Koten, G. \& Spek, A. L. (1979). Inorg. Chem. 18, 1052-1053.
Yam, V. W. W., Fung, W. K. M. \& Cheng, K. K. (1997). Organometallics, 16, 2032-2037.

